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Synthesis of data into formal models of cellular function is
rapidly becoming a necessary industry. The complexity of the
interactions among cellular constituents and the quantity of data
about these interactions hinders the ability to predict how cells
will respond to perturbation and how they can be engineered
for industrial or medical purposes. Models provide a systematic
framework to describe and analyze these complex systems. In
the past few years, models have begun to have an impact on
mainstream biology by creating deeper insight into the design
rules of cellular signal processing, providing a basis for rational
engineering of cells, and for resolving debates about the root
causes of certain cellular behaviors. This review covers some of
the recent work and challenges in developing these ‘synthetic
cell’ models and their growing practical applications.
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Introduction
Molecular biology has entered a stage of maturity that
requires its transformation into an engineering discipline.
The wealth of data on cellular components and their inter-
actions will promote an understanding of cellular behavior
that is sufficient for prediction, control and redesign.
Diagrams tracing all the interactions, activities, locations
and expression times of the proteins, metabolites and
nucleic acids involved have become so dense with lines
and annotations that reasoning about their functions has
become almost impossible.

Given the complexity and quantity of this information,
some believe that developing a rational engineering frame-
work for cellular systems may be untenable for the present.
An entire industry in ‘irrational’ engineering of cells has
grown up using combinatorial methods in chemistry,
genetic engineering and high-throughput screening tech-
nology. This approach has proven powerful in certain cases
of strain improvement, drug discovery and natural product
synthesis [1–5]. What is gained in expediency, however, is
often lost in insight. It is often unclear why the pathways
and chemicals discovered produce the effects they do, and
it is difficult to generalize these results to other systems.
Further, the more complicated the target function (e.g. the
biosynthetic route to a product or the inhibition, without
side-effect, of pathways associated with a disease), the less
likely it is that a solution will be found using combinatorial
or forced evolutionary methods. The drive for understand-
ing cellular function and the related ability to accurately

diagnose cellular state, together with the economic pull 
for rational design of metabolic/biosynthetic pathways and
molecular strategies for disease treatment, call for the
development of computable models.

Models summarize current knowledge and hypotheses
about missing information. Depending on the amount of
data available and the questions being addressed, models
are more or less detailed and abstract. Models containing
detailed statements about a process are easier to falsify
than abstract models and require more physical detail. A
validated physical model is the most predictive and useful
for understanding points of control in cellular networks
and for designing new functions within them. It is also the
most computable type of model.

There have been several reviews of cellular model simula-
tion and engineering published in the past two years (e.g.
[6–14]). Many of these provide excellent detailed descrip-
tions of various modeling strategies and applications. Most
have focused on metabolism or gene expression as these
have the most data and immediate economic impact. A
dedicated review of signal transduction models is lacking
largely owing to the paucity of such models. They do exist,
however, and their small number attests to the difficulty in
analysis of this type of pathway. The goal of this article is
to bring together the various approaches to modeling 
biological pathways with a focus on signal transduction
and, thus, to provide a touch-point summary of the process
and application of cellular model building and analysis.

From data to models
Data are the precursor to any model. The minimal basis of
a cellular network model is a list of the molecular players
and a list of the ‘influences’ of one set of players on another
or on a lumped cell behavior (such as growth). Molecular
players and their interactions have traditionally been 
discovered through painstaking genetic and biochemical
experiments. Technologies like yeast two-hybrid screen-
ing, co-immunoprecipitation, surface plasmon resonance,
and fluorescence resonance energy transfer (FRET)
experiments report on direct interactions between pairs of
molecules. Other techniques yield more indirect measures
of the interactions among molecules.

Recent advances in high-throughput molecular biology
and measurement have led to maps of molecular networks
that are stunning in their complexity. For example, there
have been several large-scale yeast two-hybrid screens for
the detection of protein–protein interactions in organisms
ranging from the T7 phage [15] to Caenorhabditis elegans
[16]. Here, the molecular players are determined either
from direct experiment or from predictions with genome
annotation tools. To date, the largest scale studies of this
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sort have been carried out in Saccharomyces cerevisiae. Uetz
et al. [17•] found 957 interactions among 1004 proteins. Ito
et al. [18] found 4549 two-hybrid interactions among 3278
proteins. Interestingly, the two studies found few overlap-
ping interactions. The experimental protocols used by
each group differed in several ways and the screening 
was far from saturated. In addition, two-hybrid screening 
methods have substantial rates of false-positives and 
false-negatives.

Newer experimental technologies have been developed
for indirectly deducing interactions among molecules.
These include the multiple alignment of DNA regions
upstream of genes clustered by their expression patterns
[19], statistical analysis of concomitant variation and 
temporal sequencing [20], and perturbation/response mod-
eling [21,22,23•,24,25]. By whatever method interactions
are deduced, direct or indirect, the results are reported in
the literature in non-standard formats. There have been
some recent encouraging results using natural language
processing (NLP) techniques to extract protein names and
interactions directly from the online literature in order to
predict cellular networks [26–28]. As applications of NLP
technologies to molecular biology are still in their early
days, they currently have high false-positive and false-
negative rates and severe limitations on the type and 
complexity of interaction they can capture. Nevertheless,

they show exceptional promise in aiding the early stages of
model development.

Less common are experimental methods for assigning
mechanism and obtaining physical constants for all the
known interactions and processes; these are the most 
difficult to obtain even in vitro. In vivo quantitative 
measurements are few and far between, with the notable
exception of NMR-based flux measurements [29]. In a
model with many interactions, the probability of finding
any quantitative data on all of the interactions is minus-
cule. When such data exist, the conditions for each
experimental measurement and even the strain of organ-
ism may be different. This dearth of information, notable
in this data-rich age, is the major impediment to detailed
predictive models of cellular networks.

The need to organize as much experimental data as 
possible in a systematic manner has led to several excellent
databases of molecular properties, interactions and 
pathways. These range from highly edited and curated
databases, such as EcoCyc, to databases of primary data
such as the Database of Interacting Proteins. Table 1 
lists some of these databases and their properties. These 
databases provide an essential infrastructure for future
modeling efforts, although they are difficult to compile and
maintain. They also suffer from a plethora of non-standard

Table 1

Example databases in support of simulation.

Name (details) Descriptors* Website

BBID (Biological Biochemical Image Database) sgmE http://bbid.grc.nia.nih.gov/

BIND (Biomolecular Interaction Network Database) sED http://www.bind.ca/ 

Brenda (a comprehensive enzyme information system) mEPM http://www.brenda.uni-koeln.de/ 

BRITE (Biomolecular Relations in Information Transmission and sgmEP http://www.genome.ad.jp/brite/brite.html 
Expression)

CSNDB (Cell Signaling Networks Database) sE http://geo.nihs.go.jp/csndb/ 

DIP (Database of Interacting Proteins) smEPD http://dip.doe-mbi.ucla.edu/ 

EcoCyc/Metacyc (Encyclopedia of E. coli Genes and Metabolism) mED http://ecocyc.org/ 

EMP (Enzymes and Metabolic Pathways Database) mEPM http://www.empproject.com/ 

GeNet sE http://www.csa.ru:81/Inst/gorb_dep/inbios/genet/genet.htm

GeneNet (information on gene networks) smgE http://wwwmgs.bionet.nsc.ru/mgs/systems/genenet/

Kegg (Kyoto Encyclopedia of Genes and Genomes) sgmED http://www.genome.ad.jp/kegg/kegg.html 

SPAD (Signaling Pathway Database) sgE http://www.grt.kyushu-u.ac.jp/eny-doc/ 

Transfac/Transpath sgED http://transfac.gbf.de/TRANSFAC/ 

UM-BBD (University of Minnesota Biocatalysis/Biodegradation mE http://umbbd.ahc.umn.edu/ 
Database)

WIT (supports the curation of function assignments made to genes mEPM http://wit.mcs.anl.gov/WIT2/
and the development of metabolic models)

*The descriptors are as follows: g, genetic pathways; m, metabolic pathways; s, signal transduction pathways; D, can be downloaded; E, edited
content; P, primary data; M, mechanistic/kinetic data available. 
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formats for storage, query and transport. Some of these
problems are being addressed by the development of
XML-based data transport standards (e.g. http://xml.cover-
pages.org/xml.html#applications), but standards are still in
flux. When journals start requiring that data generated in
support of a paper be submitted in standard, machine-read-
able format, many of these problems will be ameliorated.

Classes of models
Graphical models 
Because of the heterogeneity in data type, quality and
availability, cellular network modelers have had to develop
several different model classes that can operate at different
levels of abstraction. The most common models are 
graphical models (i.e. cartoons) of the process. Cartoons
graphically depict each biological component connected to
others with arrows indicating their interaction. There is 
little standard nomenclature for cartoons, although at least
two formal graphical annotations have been suggested
recently [30•,31]. But even Kurt Kohn’s wonderful summary
cartoon of the mammalian cell cycle [30•], wherein the 
conventions for representing interactions and species are
outlined in some detail, contains abstractions and missing
information. One example in this system is the representa-
tion of the important tumor suppressor p53. The diagram
shows this single protein with 27 sites to which phosphate
can be added or removed by various specific enzymes. The
implication is that this protein, theoretically, can be in any
of 227 (= 34,217,728) possible phosphorylation states and
each of these states has a different possible Gibbs free 
energy and different interaction kinetics with all other 
molecules in the system. This is a problem not only for this
model type, but spells trouble for any detailed mechanistic
model of this system. Nevertheless, the graphical model
summarizes a great deal of the current information about a
pathway and facilitates the formation of hypotheses about
network function as well as pointing out some of the 
difficulties involved in understanding the network.

Qualitative models 
Qualitative models are the first form of a model beyond a
cartoon that can be analyzed automatically. They range
from simple graphs to logical and statistical models. For
example, Jeong and colleagues [32,33] used only the yeast
protein–protein interaction data cited above to conclude
that the statistical properties of the graph implied a partic-
ular stability of network function to most ‘deletions’ in the
graph. This conclusion was strengthened by correlation of
the number of interactions per protein with phenotypes of
knockout mutants collected from the literature. For more
dynamical and specific questions, logical models are often
used when mechanistic data are lacking. Boolean, fuzzy
logical or rule-based systems have been developed to
approach the simulation of complex networks; Thieffry and
Thomas [10] review their pioneering work in this field.
Many groups have used this paradigm for modeling genetic
and developmental systems. Lee et al. [34] used fuzzy logic
(a generalization of Boolean logic) as a supplement to 

kinetic models to include uncertain information necessary
for fitting the kinetics of metabolic enzymes. Trelease et al.
[35] used a general qualitative simulation tool, QSIM, to
simulate the effect of exogenous gene activations in the
NFκB network. All these models require expert insight to
codify the high-level rules in a consistent and accurate fash-
ion. Because so much interpretation of the data is necessary
before a model is made, there is an increased danger of
building-in a desired answer.

When perturbation response or time-series data are avail-
able, statistical influence models become feasible. Linear
[36], neural network-like [37], and Bayesian models [20]
have all been used to deduce both the topology of gene
expression networks and their dynamics. The amount of
data necessary to fit these models often prohibits their use.
Statistical influence models are not precisely causal 
models in that they are fits of the model structure to 
indirect data on interactions. Interpretations of control in
these models must be cautious.

Mechanistic models 
With enough data, more mechanistic models can be 
developed. Cybernetic [38] and power law [39] formalisms
assert a causal structure, but employ generic nonlinear
functions numerically fit to kinetic data and possibly con-
strained by optimal conditions. Such models form the basis
of a large class of metabolic control analyses and dynamic
simulations. More detailed models require that chemical or
physical mechanisms be asserted for each interaction. For
example, McAdams and Arkin [40] propose that, because
of the small concentrations of the molecules involved,
gene expression must be a stochastic process of a particu-
lar sort. They followed the implications of the theory in an
integrated model of the λ phage lysis/lysogeny decision
and showed that the decision is fundamentally non-
deterministic [41]. Physical models have the largest data
requirement, are the most difficult to falsify, and, in prin-
ciple, are the most predictive.

There is always a balance between top-down and bottom-up
models. No model is fully bottom-up. Abstractions can both
clarify the sources of control in a network and indicate
where more data are necessary. There is always the problem
of unknown players and unknown and uncharacterized
interactions in the network. A formal model that can be rep-
resented in mathematical form has the advantage of being a
precise statement of the current understanding and can be
formally proved or disproved and checked for consistency.

Basic analysis and simulation of models
Once a model has been formulated, there are several 
standard approaches for analyzing its properties. If the model
is dynamic, then simulation is the most common approach.
Steady-state analyses like bifurcation theory, stoichiometric
network analysis, flux-balance analysis, and sensitivity
analysis are also commonly used. These give more detailed
insights into system control and can indicate where the
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model is sensitive to parameters or missing data. Any
analysis of a model generally goes beyond these formal
methodologies (discussed below).

Several different tools have been developed to simulate
and analyze models of cellular systems (see Table 2). More
general tools, such as Mathematica and MATLAB,are 
also commonly used for simulation. Because these two 
programs are ubiquitous, they provide good facilities for
transferring models among different researchers. Platform-
independent model specification languages are also 
under development; for example, SBML (http://www.cds.
caltech.edu/erato/sbml/docs/index.html) and CellML
(http://www.cellml.org/) are currently being developed in a
cooperative and community fashion.

Applications
Models and their analysis have many purposes. In recent
years we have seen the development of interesting uses.
The small selection of papers described below serves to
demonstrate how models can be useful in organizing
thoughts and testing hypotheses.

Demonstrating a design property of a network
Quite often a network is so complex or so odd in structure
that it is of interest to understand what properties of its
design are necessary for cellular function. In a semimechanistic

model of the gap and pair rule (genes in Drosophila
melanogaster that determine segment polarity) von Dassow
et al. [42••] showed that the structure of the network is
both sufficient to explain a great deal of the observed cel-
lular patterning and, moreover, that the network behavior
is robust to parameter variation. To achieve this robustness
the authors had to add hypothetical (but reasonable) addi-
tions to the known network, thus demonstrating another
use for models: the ability to formally propose and justify
new mechanistic hypotheses and predict new network 
elements. This evokes earlier results by Barkai and
Leibler [43] who demonstrated robustness in exact adapta-
tion in the Escherichia coli chemotactic pathways. Endy
et al. [44••], in one of the first nearly whole genome mod-
els of an organism, model the entire life-cycle of the T7
phage during infection of E. coli [45]. They explore the
effect of genome organization on the efficiency of phage
growth and find that the qualitative behavior of the model
was largely insensitive to genome organization. Specific
‘shuffled’ genomes were found that allowed the computa-
tional phage to grow better than wild-type under specified
conditions. These predictions were not borne out experi-
mentally, but the experiment did not entirely match the
‘genotype’ of the model. Even so, models can be most 
useful when they fail in unexpected ways. Modifications to
the model to bring it in line with experiment provide
hypotheses that can then be experimentally tested.

Table 2

Example simulation programs.

Name Descriptors* Website

Gepasi/Copasi fkFW http://gepasi.dbs.aber.ac.uk/softw/gepasi.html

BioSim qWMU http://www.molgen.mpg.de/~biosim/BioSim/BioSimHome.html 

Jarnac krfbFWS http://members.tripod.co.uk/sauro/Jarnac.htm

DBSOLVE kbFWD http://websites.ntl.com/~igor.goryanin/

MCELL rsU http://www.mcell.cnl.salk.edu/

Virtual Cell ksDFWMU http://www.nrcam.uchc.edu/ 

E-Cell kWUS http://www.e-cell.org/ 

Neuron ksFWMUS http://neuron.duke.edu/ 

Genesis ksUS http://www.bbb.caltech.edu/GENESIS/genesis.html 

Plas kfbFW http://correio.cc.fc.ul.pt/~aenf/plas.html 

Ingeneue qkFMWUS http://www.ingeneue.org/

DynaFit kfW http://www.biokin.com/dynafit/

Stochsim rS http://www.zoo.cam.ac.uk/comp-cell/StochSim.html

T7 Simulator kUS http://virus.molsci.org/t7/

Molecularizer/Stochastirator krUS http://opnsrcbio.molsci.org/alpha/comps/sim.html

All packages have facilities for chemical kinetic simulation of one sort
or another. Some are better designed for metabolic systems, others for
electrochemical systems, and still others for genetic systems. *The
descriptors are as follows: b, bifurcation analyses and steady-state
calculation; f, flux balance/metabolic control and related analyses;

k, deterministic kinetic simulation; q, qualitative simulation; r, stochastic
process models; s, spatial processes; D, database connectivity;
F, fitting, sensitivity and optimization code; M, runs on Macintosh;
S, source code available; U, runs on linux or Unix; W, runs
on windows.



642 Pharmaceutical biotechnology

Another interesting example of a generic design property
in a signal transduction model is given by the investigation
of Levchenko et al. [45] into the role of scaffolding proteins
in mitogen-activated protein kinase signaling. They
showed that the combinatorics of protein binding to the
scaffold molecule can either amplify or reduce activity of
the pathway depending on the relative concentration of
the scaffold itself.

Developing an understanding of endogenous control
Once more mechanistic models become available, it will
be possible to make precise statements about control in
the networks. The most popular form of control analysis is
metabolic control analysis, which has been reviewed 
elsewhere [12]. One of the best examples of elucidating
control with simulation, phase plane analysis and bifurca-
tion theory is the ongoing work by Tyson on the yeast cell
cycle. Chen et al. [46•] summarize and extend this work to
elucidate the control of different phases of mitosis and
explain the impact of 50 different mutants on these deci-
sions. The control of cytokine trafficking in immune cells
has been modeled by several groups. Recently, Fallon and
Lauffenburger [47•] used a kinetic model to explain,
among other things, a counter-intuitive result that the
increased potency of an interleukin-2 analog does not
derive from tighter receptor binding, but instead results
from differential binding to receptor subunits that are
alternately sorted.

Developing a strategy for control or design
Models can be used to test design ideas for engineering
networks in cells. Elowitz and Leibler [48] and Gardner,
Cantor and Collins [49] used very simple models to sup-
port the design of a genetic oscillator and a switch in E. coli.
Models can also be used to test designs for the control of
cellular networks. Endy and Yin [50] used their T7 model
to propose a pharmaceutical strategy for preventing both
T7 propagation and the development of drug resistance
through mutation.

Proving necessity and/or sufficiency
Given an observed cell behavior, models can be used to
prove necessity of a given regulatory motif or the suffi-
ciency of known interactions to produce the phenomenon.
Yi et al. [51] demonstrate the necessity of at least one 
integral feedback loop to explain robust adaptation in the
chemotactic signal transduction pathways; they identify
the loop in E. coli with the receptor methylation/
demethylation system. Qi, Groves and Chakraborty [52••]
demonstrate the sufficiency of membrane energetics, 
protein diffusion, and receptor-binding kinetics to gener-
ate a particular dynamic pattern of protein location at the
synapse between two immune cells. The model is striking
in that the cytoskeleton is thought to play an active role in
organization of the supramolecular structures. In rare cases,
models can also be used to show insufficiency of a reason-
able model to explain observed behavior (e.g. see the
discussion in [44••]).

Explaining the contradictory or exotic behavior of
complex networks
Contradictions in the literature about any particular 
pathway abound. In one example, the behavior of several
different mutants in the E. coli chemotaxis pathway seemed
to behave contrary to the logical organization of the net-
work. Abouhamad et al. [53••] used a model of chemotaxis
that had been validated on over 65 mutant strains of E. coli
to help design experiments to successfully explain the 
paradoxes. In a series of simplified kinetic models for
eukaryotic signal transduction pathways, such as the epi-
dermal growth factor receptor signaling pathway, Bhalla and
Iyengar [54] explore how these pathways could generate
sustained activation, and bistable and pulsatile behaviors.

There are many other excellent models with different
properties and goals than those described here, and it is
unfortunate that there is not space to discuss them further.
As different researchers build more models about related
systems, there will be a drive to combine them. The mod-
els will cover a wide range of physical phenomena from
electrochemical to mechanical systems and cross scales
from atomic dimensions to hundreds of microns. Aside
from standardizing model specifications, there are deep
theoretical and computational challenges to analyzing and
simulating these multivariate, multiscale and hybrid 
systems that have proven refractory for decades. The
examples above demonstrate that these difficulties need
not prevent modeling from being a powerful adjuvant for
the exploration of network function.

Conclusions
Modeling is becoming a common and powerful support for
understanding cellular behavior. Paradoxically, although
new measurement technologies are uncovering increasingly
complex networks of chemical and physical interactions,
there are relatively few systems with enough quality data to
create detailed models of cellular function. The applica-
tions of these models are of sufficient importance to
demand that this void be filled. The challenge is to design
the computation/experiment cycle to efficiently deduce
and characterize signaling pathways in single cells. This
will require the application of many different experimental
and computational technologies. Data from microarrays,
protein mass spectroscopy, capillary and high-pressure
chromatographies, high-end fluorescence microscopy, and
other techniques must be combined so that models of suf-
ficient accuracy can be built and validated on standardized
datasets. Such coordinated marshaling of researchers and
resources towards a shared goal is a common model for
industry, but this multilaboratory approach is new for the
academic environment. Large government-funded projects
like the Alliance for Cellular Signaling (http://www.
cellularsignaling.org/), a consortium of researchers dedicat-
ed to the quantitative study of G-protein-coupled signal 
transduction in cardiomyocytes and B cells, or private 
organizations like the Institute for Systems Biology
(http://www.systemsbiology.org/home.html) are the new
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great experiments in bringing a cooperative approach to
academic biology. These efforts will have to be carefully
nurtured if this first great push to synthesize data accumu-
lated over half a century on the molecular basis of cellular
function is to succeed.
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